
www.ajhg.org The American Journal of Human Genetics Volume 80 March 2007 577

LETTER TO THE EDITOR

The Use of Inferred Haplotypes
in Downstream Analyses

To the Editor: In the March 2006 issue of the Journal, Mar-
chini et al.1 provided a comprehensive description of phas-
ing algorithms for inference of individual haplotypes from
unphased genotype data. They stated that an unresolved
question is “whether and, if so, how best to use inferred
haplotypes in downstream analyses.”1(p.448) The question
is important because knowledge of individual haplotypes
is rarely an end in itself. We offer our perspective on this
issue, particularly in the context of (case-control) associ-
ation studies.

Phase ambiguity is a kind of missing data, and use of
inferred haplotypes in downstream analyses is a form of
imputation. The voluminous statistical literature on miss-
ing data casts light on the potential pitfalls of imputation.
In the words of Dempster and Rubin,2(p.8)

The idea of imputation is both seductive and dan-
gerous. It is seductive because it can lull the user into
the pleasurable state of believing that the data are com-
plete after all, and it is dangerous because it lumps to-
gether situations where the problem is sufficiently mi-
nor that it can be legitimately handled in this way and
situations where standard estimators applied to the real
and imputed data have substantial bias.

As pointed out by Marchini et al.,1 all the phasing al-
gorithms assume Hardy-Weinberg equilibrium (HWE).
Even when the general population is in HWE, the case
sample and the pooled case-control sample may not be.3

Thus, the phasing algorithms may produce biased esti-
mation of haplotype distributions with case-control data.
The influence of departures from HWE on estimation ac-
curacy depends on the directionality of the disequilib-
rium.4 The phasing algorithms do not acknowledge the
selective-sampling feature of the case-control design and
thus may produce biased results. Also, the phasing algo-
rithms do not take into account phenotype, which is po-
tentially informative about phase.

The common practice of assigning the most likely di-
plotype (i.e., the pair of haplotypes with the highest pos-
terior probability) to each individual is intrinsically biased
because the most likely diplotype is not necessarily the
true diplotype. Consider the simple situation of two SNPs,
with the minor and major alleles coded as 1 and 0, re-
spectively, at each SNP site. The genotype is defined as
the number of minor alleles at the two SNP sites. Hap-
lotype ambiguity arises if and only if an individual is dou-
bly heterozygous—that is, has the 11 genotype. Both the
(10,01) and (00,11) diplotypes produce the 11 genotype.
There is obviously a problem if all doubly heterozygous
individuals are assigned the more likely (i.e., the more
common) of the two diplotypes, especially when the fre-

quency of the less common diplotype is similar to (al-
though lower than) that of the more common diplotype.

When causal haplotypes exist, the phasing algorithms
may incorrectly assign causal haplotypes to individuals
without causal haplotypes or may reconstruct causal hap-
lotypes as noncausal haplotypes. Consequently, treatment
of inferred haplotypes as true haplotypes in downstream
association analyses tends to attenuate the estimated hap-
lotype effects and to reduce the power for detecting causal
variants. Incorrect haplotype assignments may also induce
spurious association for noncausal haplotypes and thus
increase false-positive results.

For illustration, we consider the diplotype distribution
from a hypothetical case-control study shown in the top
part of table 1. With diplotype D as the reference, the
estimated odds ratios (ORs) for diplotypes A, B, and C are
3, 1, and 1, respectively. Assume that, for both cases and
controls, 20% of the individuals that truly have diplotype
A are incorrectly assigned diplotype B, and another 20%
are incorrectly assigned diplotype D, yielding the mis-
classified distribution shown in the bottom part of table
1. Then, the estimated OR for diplotype A is reduced from
3 to 2.3; for diplotype B, it is increased from 1 to 1.2; and,
for diplotype C, it is reduced from 1 to 0.8. This example
demonstrates that treatment of inferred haplotypes as true
haplotypes may bias the estimated effects of causal hap-
lotypes downward and may also bias the estimated effects
of noncausal haplotypes away from the null value in
either direction. The distortions may be more profound
if the misclassification rates differ between cases and
controls.

Several simulation studies5–8 showed that imputation
can yield substantial bias of estimated genetic effects, poor
coverage of confidence intervals, and significant inflation
of type I error, especially when the effects are large and
the phase uncertainty is high. A recent article by French
et al.8 reported the bias of the estimated log ORs in the
range of �0.49 to 0.22, an actual type I error of 18% at
the 5% nominal significance level, and coverage of !40%
for 95% CIs. Indeed, when the estimator is biased, the
coverage of the associated 95% CIs will decrease toward
0% and the type I error will increase toward 100% as the
sample size increases.

In recent years, researchers3,9–12 have developed maxi-
mum-likelihood methods to properly account for phase
uncertainty in association analyses. This approach in-
volves maximizing the observed-data likelihood with
respect to all relevant parameters (including haplotype fre-
quencies and disease risks) simultaneously. The maxi-
mum-likelihood estimators for haplotype effects are un-
biased and statistically efficient, which implies that
maximum likelihood is the most powerful among all valid
methods.12 A question naturally arises as to how much
more powerful maximum likelihood is compared with im-
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Table 1. Effects of Incorrectly Assigned
Haplotypes on Risk Estimates

Type of Haplotype
and Measure

Diplotype

A B C D

True haplotypes:
No. of cases 500 100 200 200
No. of controls 250 150 300 300
OR 3.0 1.0 1.0 …

Inferred haplotypes:
No. of cases 300 200 200 300
No. of controls 150 200 300 350
OR 2.3 1.2 0.8 …

Table 2. Standardized LD Coefficients
(D′) for SNPs 60–64 on Chromosome 18
of the HapMap CEU Sample

SNP

D′ for SNP

61 62 63 64

60 1.0 .86 .28 .68
61 … .86 1.0 .84
62 … … .55 .73
63 … … … .51

putation. To answer this question, we conducted a few
simulation studies.

In our first simulation study, we considered the type 1
angiotensin receptor gene (AGTR1) studied by French et
al.8 There were 12 SNPs with nine “common” haplotypes
(see table I in the work of French et al.8). We generated
case-control data under the third model given in their
table III, but we used more-moderate ORs of 2.5, 2, 1.5,
and 2 for haplotypes D, F, G, and H, respectively. We as-
signed disease status under the additive mode of inheri-
tance, such that the disease prevalence was ∼2%, and we
selected 800 subjects, with 3 control subjects per case sub-
ject. On the basis of 10,000 simulated data sets with 2%
randomly missing SNPs, the power of the maximum-like-
lihood method11 to detect the effects of haplotypes D, F,
G, and H was estimated at 62%, 49%, 42%, and 50%,
respectively, at the nominal significance level of 1%, com-
pared with power of 50%, 39%, 24%, and 32%, respec-
tively, for the imputation method with the PHASE (v2.1)
algorithm. The maximum-likelihood and imputation
methods yielded type I error of 1% and 2%, respectively,
for the null haplotype E at the 1% nominal significance
level. In this study, ∼75% of individuals had unambiguous
diplotypes, and ∼82% had highest posterior probabilities
10.75.

Our second simulation study mimicked the two-locus
model Mul3 of Cordell.7 We assumed that haplotypes 01
and 10 have ORs of 1.2 and 1.4 in reference to haplotypes
00 and 11, with additive mode of inheritance, and we
tested whether locus 2 has an effect, while allowing an
effect at locus 1. On the basis of 10,000 simulated data
sets of 1,000 cases and 1,000 controls with 10% randomly
missing genotypes, we obtained power values of 65%,
40%, and 17% at the nominal significance levels of 5%,
1%, and 0.1%, respectively, for the maximum-likelihood
method, compared with 41%, 20%, and 6% power for the
imputation method.

As pointed out by a referee, the phasing algorithms re-
viewed by Marchini et al.1 are often used to phase large
regions, so it would be interesting to assess the perfor-
mance of the imputation method in testing for haplotype-
disease association on a small set of SNPs that is phased
within a larger genomic context. To this end, we generated
100 SNPs according to the allele frequencies and pairwise

linkage disequilibrium (LD) coefficients of the first 100
SNPs on chromosome 18 of the CEU sample in the
HapMap genomewide data, and we performed haplotype
analysis on SNPs 60–64. The most common haplotypes of
the five SNPs are 00000, 00001, 00010, 00100, 00101,
01101, 10000, 10001, 10010, 10100, and 10101, with fre-
quencies of 4.6%, 8.8%, 11.0%, 7.4%, 7.2%, 7.0%, 6.6%,
6.8%, 8.6%, 7.4%, and 8.4%, respectively. We assumed
that the disease risk was influenced by haplotype 00000
only, with an OR of 3 under the additive mode of inher-
itance. We set the overall disease prevalence to ∼5% and
selected 300 cases and 300 controls. We assessed the hap-
lotype-disease association for those 5 SNPs, which were
phased together with the other 95 SNPs by the PHASE
algorithm. It was not computationally feasible to phase
600 subjects altogether for the 100 SNPs. Thus, we ran-
domly divided the 600 subjects into six groups of 50 cases
and 50 controls. (We found that phasing cases and con-
trols together provided much better control of type I error
than did phasing cases and controls separately.) We sim-
ulated 1,000 data sets with 2% randomly missing SNP val-
ues. We found that, at the nominal significance level of
1%, the imputation method had 60% power to detect the
causal haplotype 00000 and had type I error of 5%, 3%,
4%, and 7% for null haplotypes 00001, 00010, 00100, and
10000, respectively, whereas the maximum-likelihood
method had 72% power to detect the causal haplotype
and had type I error close to the nominal level for all null
haplotypes. The maximum-likelihood estimates had little
bias, whereas the imputation method produced bias of
�0.33, 0.27, 0.21, 0.26, and 0.30 for the log ORs of
haplotypes 00000, 00001, 00010, 00100, and 10000,
respectively.

In the above study, the LD among the five SNPs was not
particularly strong (table 2). In a related study, we consid-
ered SNPs 95–99, which had very high LD (table 3). The
most common haplotypes of SNPs 95–99 are 00000,
00001, 01000, 01001, 01100, 01111, 10000, and 10001,
with frequencies of 39.7%, 20.8%, 2%, 1.3%, 1.8%, 13.8%,
12.9%, and 5.4%, respectively. We assumed that 10001 is
the causal haplotype with an OR of 2.5 under the additive
mode of inheritance. The rest of the simulation setup was
the same as in the previous simulation study. The impu-
tation method had 83% power to detect the causal hap-
lotype and had type I error of 2% and 4% for null hap-
lotypes 00001 and 10000 at the nominal significance level
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Table 3. Standardized LD Coefficients
(D′) for SNPs 95–99 on Chromosome 18
of the HapMap CEU Sample

SNP

D′ for SNP

96 97 98 99

95 1.0 1.0 1.0 .96
96 … .83 .95 .94
97 … … .95 .77
98 … … … .94

of 1% and produced bias of �0.15, 0.12, and 0.14 for the
log ORs of haplotypes 10001, 00001, and 10000, respec-
tively. On the other hand, the maximum-likelihood
method had 92% power to detect the causal haplotype
and provided accurate control of type I error and unbiased
estimates of haplotype effects.

Our studies obviously do not encompass all possible
scenarios. Thus, the results do not imply that imputation
is always bad, but rather that it can be considerably less
powerful than maximum likelihood while providing bi-
ased estimates of genetic effects and poor control of type
I error in practical situations. The problems tend to be
more severe when there is greater uncertainty in recon-
structed haplotypes.

Our simulation studies were focused on single impu-
tation, which is the most common practice. Some alter-
native procedures have been proposed, including multiple
imputation, expectation substitution, and weighted logis-
tic regression.6–8 These procedures are not theoretically
valid either (for many of the reasons mentioned above)
and may perform poorly. In particular, the versions of
multiple imputation that have been proposed are im-
proper because they fail to account for phenotype and
case-control sampling. Proper multiple imputation would
provide a good approximation to maximum likelihood.
In short, no method can be more powerful than maximum
likelihood while providing the same control of type I error,
although some methods may approximate maximum like-
lihood well under certain circumstances. We recommend
that maximum likelihood be generally adopted for anal-
yses of haplotype-disease associations.

A major appeal of imputation is that standard statistical
software can be used to perform the desired association
analyses, once individual haplotypes are inferred by a
phasing algorithm. The extent to which maximum like-
lihood can be used in association analyses depends criti-
cally on the availability of specialized software. Several
groups have developed computer programs for maximum-
likelihood methods. We recently posted a user-friendly
software interface called “HAPSTAT.” This software pro-
vides maximum-likelihood procedures for estimating and
testing haplotype effects and haplotype-environment in-
teractions under a wide variety of disease models.

D. Y. LIN AND B. E. HUANG

Web Resource

The URL for data presented herein is as follows:

HAPSTAT, http://www.bios.unc.edu/˜lin/software/
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